hild black holes are the simplest black holes because they do not rotate and have no charge. The Newmann black hole, on the other hand, rotates and has a charge, but like the Schwarzschild black hole can have varying masses from a couple times our sun's mass to several billion times the mass of our sun. Primordial black holes were first theorized about "In the year 1973 [by] Stephen W. Hawkings [who] postulated that in the early moments of the big bang, miniature black holes would have been" created with masses around that of a small mountain, 2 * 10^13 kg (Wagner, 1999). These black holes could resemble a Schwarzschild black hole or Newmann black hole or even be a hybrid of their properties by rotating but possessing no charge.Newmann black holes have an "ellipsoid (three-dimensional oval) around [them] called the ergosphere, and it connects with the black hole's outer event horizon at the poles of its axis of rotation" (Jebornak, 1998). Once matter enters the ergosphere, it begins to rotate along with the rotation of the black hole; this forms what is known as an accretion disc. The closer that the matter comes to the event horizon, the faster the matter will be rotating. With the help of Hubble and other telescopes astronomers have found matter rotating around super massive black holes at speeds in excess of 1.9 million miles per hour at the centers of distant galaxies.All of this rotating matter rubs together causing a build up of static electricity (similar to rubbing ones feet on a carpet) which, since the matter is rotating, makes an electric field with an extremely powerful magnetic field at its poles. This magnetic field operates much like the one here on earth: all matter with an opposite charge of the pole is attracted to it. Since these magnetic fields are so intense, matter is pull towards the poles and shot away from them at speeds of 90% the speed of light or higher.Black holes with small mass have tremendous tidal forc...