ch faster than the Moon moves in its orbit, the bulges move around the Earth about once a day giving two high tides per day. But the Earth is not completely fluid, either. The Earth's rotation carries the Earth's bulges get slightly ahead of the point directly beneath the Moon. This means that the force between the Earth and the Moon is not exactly along the line between their centers producing a torque on the Earth and an accelerating force on the Moon. This causes a net transfer of rotational energy from the Earth to the Moon, slowing down the Earth's rotation by about 1.5 milliseconds/century and raising the Moon into a higher orbit by about 3.8 centimeters per year. (The opposite effect happens to satellites with unusual orbits such as Phobos and Triton). The asymmetric nature of this gravitational interaction is also responsible for the fact that the Moon rotates synchronously, i.e. it is locked in phase with its orbit so that the same side is always facing toward the Earth. Just as the Earth's rotation is now being slowed by the Moon's influence so in the distant past the Moon's rotation was slowed by the action of the Earth, but in that case the effect was much stronger. When the Moon's rotation rate was slowed to match its orbital period (such that the bulge always faced toward the Earth) there was no longer an off-center torque on the Moon and a stable situation was achieved. The same thing has happened to most of the other satellites in the solar system. Eventually, the Earth's rotation will be slowed to match the Moon's period, too, as is the case with Pluto and Charon. Actually, the Moon appears to wobble a bit (due to its slightly non-circular orbit) so that a few degrees of the far side can be seen from time to time, but the majority of the far side (left) was completely unknown until the Soviet spacecraft Luna 3 photographed it in 1959. (Note: there is no "dark side" of the Moon; all parts of the Moon get sunli...