would transmit the information are what researchers today; this single quantum logic gate and its arrangement of components to perform a particular operation mainly focus on. One such gate could control the switch from a 1 to a 0 and back, while another could take two bits and make the result 0 if both are the same, 1 if different. These gates would be rows of ions held in a magnetic trap or single atoms passing through microwave cavities. This single gate could be constructed within the next year or two yet a logical computer must have the millions of gates to become practical. Tycho Sleator of NYU and Harald Weinfurter of UIA look at the quantum logic gates as simple steps towards making a quantum logic network. These networks would be but rows of gates interacting with each other. Laser beams shining on ions cause a transition from one quantum state to another which can alter the type of collective motion possible in the array and so a specific frequencies of light could be used to control the interactions between the ions. One name given to these arrays has been named "quantum-dot arrays" in that the individual electrons would be confined to the quantum-dot structures, encoding information to perform mathematical operations from simple addition to the factoring of those whole numbers. The "quantum-dot" structures would be built upon advances in the making of microscopic semiconductor boxes, whose walls keep the electrons confined to the small region of material; another way to control the way information is processed. Craig Lent, the main researcher of the project, base this on a unit consisting of five quantum dots, one in the center and four and at the ends of a square, electrons would be tunneled between any of the two sites. Stringing these together would create the logic circuits that the new quantum computer would require. The distance would be sufficient to create "binary wires" made of rows of these un...