1st century is potentially infinitely more powerful than any other person in the millions of years of human history. Still, computers were designed to be good at what humans are bad at, not at what comes naturally, and they work accordingly. A bulldozer is obviously much better than any human at some things, most notably at moving large amounts of dirt from place to place, but if one asks it what the fourth root of 1,783 is, it won’t even venture a guess. The same holds true for computers. They can answer almost (6.49812162563) instantaneously the above question, but are notoriously difficult beings with which to have an intelligent conversation. Efforts to simulate human thought patterns by traditional means in computers are misguided. The hardware of all electronic computers today consists of the same general structure, known as the von Neumann architecture. Data and instructions are located at specific discrete addresses in memory, and are located and processed one at a time by a central processor. Variations such as parallel processing, to execute multiple instructions per cycle, or virtual memory, to store more data than the physical amount of memory allows for, are all minor changes to this basic design (Artificial Intelligence 104). To utilize this structure, programs must be clearly delineated as a set of logical, definite steps, and human reasoning processes, for the very reason that they are acquired and assimilated in the human mind so effortlessly, resist this type of delineation. (This is not to say that it could not be done; assuming no metaphysical basis for consciousness exists, it would be possible to map the structure of a brain down to the level of the elementary particle and iterate the positions of each, but as such a solution would require by today's standards a hard-drive larger than the universe and more time than that hard-drive's constituent atoms would have before deteriorating, it is probably ...