y of the cell membrane. Also, it is possible that vascular diseases are caused by oxidative damage since oxidized lipids in the blood cause arteries to thicken abnormally (Ricklefs and Finch, 1995, 24). In addition, some scientists believe that difficulty in, or slowness of movement (when we age), as well as tremors associated with the aging disease called Parkinson=s disease are caused by oxidative damage (Ricklefs and Finch, 1995, 26). The neurotransmitter dopamine, found in the brain is damaged by free radicals produced by enzymes during the removal of dopamine from the synapses of the brain. During aging, damaged mtDNA is thought to collect in parts of the brain with high dopamine concentrations and is thought to be caused indirectly by the presence of these free radicals (Ricklefs and Finch, 1995, 25). Some regions of the brain high in dopamine and damaged mtDNA happen to be the basal ganglia, the parts that aids in movement control (Ricklefs and Finch, 1995, 25). A Free Radical Reaction with Glucose As the body continues its normal survival processes, insulin becomes less effective in encouraging the uptake of glucose from the blood. In this way, the body develops insulin resistance. This condition is similar to the more serious type of diabetes called maturity-onset diabetes, or type II diabetes. If diabetes was left untreated, the excess glucose in the bloodstream would not be taken into cells because of insulin resistance. Instead, the excess glucose in the blood would react with hemoglobin in a free radical reaction through a process called non-enzymatic glycation. Other proteins such as collagen and elastin, which make up the connective tissues between our brain and skull, and in our joints, can also become glycated. Once this occurs, they stop functioning properly. The result of this is that diverse compounds called advanced glycosylation end products (AGEs) become attached to proteins. The combination of AGEs with proteins ...