diately afterwards conducted experiments on the alloys of steel. He was accustomed in after years to present to his friends razors formed from one of the alloys then discovered. During Faraday's hours of liberty from other duties, he took up subjects of inquiry for himself; and in the spring of 1823, he began the examination of a substance which had long been regarded as the chemical element chlorine, in a solid form, but which Sir Humphry Davy, in 1810, had proved to be a hydrate of chlorine, that is, a compound of chlorine and water. Faraday first analyzed this hydrate, and wrote out an account of its composition. This account was looked over by Davy, who suggested the heating of the hydrate under pressure in a sealed glass tube. This was done. The hydrate fused, the tube became filled with a yellow atmosphere, and was afterwards found to contain two liquid substances. Dr. Paris happened to enter the laboratory while Faraday was at work. Seeing the oily liquid in his tube, he rallied the young chemist for his carelessness in employing soiled vessels. On filing off the end of the tube, its contents exploded and the oily matter vanished. The gas had been liquefied by its own pressure. Faraday then tried compression with a syringe, and succeeded thus in liquefying the gas. Davy, moreover, immediately applied the method of self compressing atmosphere to the liquefaction of muriatic gas. Faraday continued the experiments, and succeeded in reducing a number of gases till then deemed permanent to the liquid condition. In 1844 he returned to the subject, and considerably expanded its limits. These important investigations established the fact that gases are but the vapors of liquids possessing a very low boiling-point, and gave a sure basis to our views of molecular aggregation. The account of the first investigation was read before the Royal Society on April 10, 1823, and was published, in Faraday's name, in the 'Philosophical Transactions.'...