Paper Details  
 
   

Has Bibliography
17 Pages
4136 Words

 
   
   
    Filter Topics  
 
     
   
 

Gravity

pair, depleting the stars of their energy. Very violent astrophysical events, such as the explosion of stars or the collision of neutron stars, can produce gravitational waves strong enough that they may eventually be directly detectable with extremely precise instruments. Astrophysicists are designing such instruments with the hope that they will be able to detect gravitational waves by the beginning of the 21st century.Another gravitational effect predicted by general relativity is the existence of black holes. The idea of a star with a gravitational force so strong that light cannot escape from its surface can be traced to Newtonian theory. Einstein modified this idea in his general theory of relativity. Because light cannot escape from a black hole, for any object—a particle, spacecraft, or wave—to escape, it would have to move past light. But light moves outward at the speed c. According to relativity, c is the highest attainable speed, so nothing can pass it. The black holes that Einstein envisioned, then, allow no escape whatsoever. An extension of this argument shows that when gravitation is this strong, nothing can even stay in the same place, but must move inward. Even the surface of a star must move inward, and must continue the collapse that created the strong gravitational force. What remains then is not a star, but a region of space from which emerges a tremendous gravitational force. VI. Other Modern Theories Print section Einstein's theory of gravitation revolutionized 20th-century physics. Another important revolution that took place was quantum theory. Quantum theory states that physical interactions, or the exchange of energy, cannot be made arbitrarily small. There is a minimal interaction that comes in a packet called the quantum of an interaction. For electromagnetism the quantum is called the photon. Like the other interactions, gravitation also must be quantized. Physicists call a quantum of gravitat...

< Prev Page 12 of 17 Next >

    More on Gravity...

    Loading...
 
Copyright © 1999 - 2025 CollegeTermPapers.com. All Rights Reserved. DMCA