not only by the change in the mass of the ball bearing but the change of the viscosity of the fluid or the change of the temperature of the fluid and ball bearing. Also the fact that the mass of the ball bearing is not proportional to the terminal velocity because m1 (1.0 g) a value of average mass and its double m2 (2.0 g) have terminal velocity equivalents p1 (9.4 cm/s) and p2 (13.5 cm/s) (p1 for m1 and p2 for m2). P2 not being the double of p1, which means that, the relationship between average mass of a ball bearing and terminal velocity are not directly proportional.The relationship between mass of the ball bearing and terminal velocity is that the terminal velocity increases in ever decreasing steps, this is because the larger the average mass the greater the friction required to balance out the forces acting on the ball bearing which in turn increases the drag acting on the ball bearing which lowers the terminal velocity.EvaluationI did have some anomalous results. This is because the tube was not exactly upright when I took these results the ball bearings drifted exactly downwards and went into the side of the tube apart from getting drag from being near the side of the tube it gained friction from the solid side of the tube. I repeated this result and removed my incorrect result. The ball bearing with the greatest mass had a volume so great that it had drag from the side of the tube because the tube was too narrow for the ball bearing not to get drag off the side of the tube.All results that are more than 10% out from any group of results would be considered inaccurate and would be repeated. The uncertainties in my results after any repeated results were sufficiently small enough to keep my results reliable.My results are not accurate enough to get a full curve of best fit because of the drag on the larger ball bearing as mentioned above.I have found from my graph that another result could have been taken with the mass of the b...