Paper Details  
 
   

Has Bibliography
15 Pages
3874 Words

 
   
   
    Filter Topics  
 
     
   
 

Black Holes

ly 6-8 times the mass of the sun) then it is most likely that when the star's gases are almost consumed those gases will collapse inward, forced into the core by the gravitational force laid upon them. The core continues to collapse to a critical size or circumference, or the point of no return. After a black hole is created, the gravitational force continues to pull in space debris and other types of matters to help add to the mass of the core, making the hole stronger and more powerful. The most defining quality of a black hole is its emission of gravitational waves so strong they can cause light to bend toward it. Gravitational waves are disturbances in the curvature of space-time caused by the motions of matter. Propagating at (or near) the speed of light, gravitational waves do not travel through space-time as such -- the fabric of space-time itself is oscillating. Though gravitational waves pass straight through matter, their strength weakens as the distance from the original source increases. Although many physicists doubted the existence of gravitational waves, physical evidence was presented when American researchers observed a binary pulsar system that was thought to consist of two neutron stars orbiting each other closely and rapidly. Radio pulses from one of the stars showed that its orbital period was decreasing. In other words, the stars were spiraling toward each other, and by the exact amount predicted if the system were losing energy by radiating gravity waves. Most black holes tend to be in a consistent spinning motion as a result of the gravitational waves. This motion absorbs various matter and spins it within the ring (known as the event horizon) that is formed around the black hole. The matter keeps within the event horizon until it has spun into the center where it is concentrated within the core adding to the mass. Such spinning ...

< Prev Page 4 of 15 Next >

    More on Black Holes...

    Loading...
 
Copyright © 1999 - 2025 CollegeTermPapers.com. All Rights Reserved. DMCA