e surface of the Earth since erosion is counteracted by new formation of land by these two processes. At about 3.8 billion years ago evidence through analysis of fossils indicates the first signs of life on the planet. There is a consensus that all life on Earth is based on the DNA molecule. The creation of DNA involves the following: The synthesis and accumulation of small organic molecules such as amino acids and phosphates, the joining of these small molecules into larger ones such as amino acids and nucleic acids, the aggregation of the proteins and nucleic acids into droplets that are chemically different than their surrounding environment, and finally, the replicating of the larger complex molecules and the establishment of heredity.2 Because of this daunting process, DNA has not yet been successfully synthesized in a laboratory setting. It has been argued by some that the first life appeared in warm ponds and by others that it first happened in deep-sea volcanic vents. Still, others believe that life may not have even started on Earth at all, but was seeded from another nearby planet such as Mars or Venus. In any case, life was rooted on the planet Earth by 3.5 billion years ago. Once originated, or contaminated from elsewhere, life evolved quite rapidly. It is hypothesized to follow this pattern: prebiotic broth, unknown step possibly some kind of extremophile (similar to the ones still found on Earth today in extreme heat and cold temperatures), RNA, protein synthesis, DNA, primitive cells, bacteria, archea, and finally eukaryotes. Only the evolution of eukaryotes is important here since it is the basic prerequisite or complex metazoan and animal life. During a 500 million year interval from 1 billion to 550 million years ago, the change from single-celled microbes to multicellular creatures occurred. Also during this time Earth’s environment experienced significant changes such as ice ages, rapid continental movements...