nsgenic cotton plant produced by this genetic technique has an altered genotype, which leads to it having an altered phenotype. The plant can then produce the Bt Toxin in its leaves through protein synthesis. This then crystallises and when an insect eats the protein it reacts in the insect’s gut and kills the insect within 24 hours. This altered genotype and phenotype will increase the chances of survival of the cotton plants against the cotton budworm (Helicoverpa) and the native budworm (H. puntigera). The protein produced by the plant is only toxic to these pests and will only be activated in the gut of these pests. The gene shouldn’t transfer into other plants that are related to cotton or disturb natural ecological systems. It is possible, however, that the gene may enter a wild strain of cotton may and this would increase the survival chances of the cotton in the wild.The genetic application will ultimately decrease the survival chances of the two types of budworm, but if they are continuously exposed to the toxin they may eventually develop resistance to the toxin. A mutation causing resistance to the toxin could occur in the budworm enabling it to survive the toxin. This mutant strain would breed successfully because it would have no other competition and can pass the gene to future generations. The Bt cotton would therefore have an indirect impact on the genotype of the cotton budworm through the mechanism of natural selection. Issue related to genetically engineering cotton for insect resistanceThe subject of developing new varieties of plants raises the issue of whether companies should be able to patent the techniques used to make transgenic plants for future profits. In 1991 and 1992 the USA based biotechnology company Agracetus was granted two patents describing a way to insert genetic material into cotton plants which grants the company rights to all genetically engineered cotton. Biotechnology com...