agoras. In the 5th century BC, some of the great geometers were the atomist philosopher Democritus of Abdera, who discovered the correct formula for the volume of a pyramid, and Hippocrates of Chios, who discovered that the areas of crescent-shaped figures bounded by arcs of circles are equal to areas of certain triangles. This discovery is related to the famous problem of squaring the circle-that is, constructing a square equal in area to a given circle. Two other famous mathematical problems that originated during the century were those of trisecting an angle and doubling a cube-that is, constructing a cube the volume of which is double that of a given cube. All of these problems were solved, and in a variety of ways, all involving the use of instruments more complicated than a straightedge and a geometrical compass. Not until the 19th century, however, was it shown that the three problems mentioned above could never have been solved using those instruments alone. In the latter part of the 5th century BC, an unknown mathematician discovered that no unit of length would measure both the side and diagonal of a square. That is, the two lengths are incommensurable. This means that no counting numbers n and m exist whose ratio expresses the relationship of the side to the diagonal. Since the Greeks considered only the counting numbers (1, 2, 3, and so on) as numbers, they had no numerical way to express this ratio of diagonal to side. (This ratio, , would today be called irrational.) As a consequence the Pythagorean theory of ratio, based on numbers, had to be abandoned and a new, nonnumerical theory introduced. This was done by the 4th-century BC mathematician Eudoxus of Cnidus, whose solution may be found in the Elements of Euclid. Eudoxus also discovered a method for rigorously proving statements about areas and volumes by successive approximations. Euclid was a mathematician and teacher who worked at the famed Museum of Alexandria and ...