f his adamantane synthesis to a 30% and 40% yield by exposing the tetrahydrodicyclopentadiene to an AlCl3-HCl mixture under 40 atms. of pressure of hydrogen and HF-BF3 catalyst respectively.7 When Schleyer focused his procedure on the retrieval of adamantane, he found that the synthesis was bountiful with the starting reactant dicyclopentadiene which is a common compound.3 Research into the enigmatic compound could then proceeded full force from this point on to examine the compound to its every minute detail. What they found confirmed their previous assertions that adamantane was unlike any carbohydrate known to man.That carbohydrate was found to be a three fused chairs of cyclohexane rings bound only to hydrogen atoms. The crystallized structure of adamantane was studied in depth by X-ray diffraction. An X-ray diffraction pattern is created through the interaction of photons emitted from an excited metal atom with the crystal form of a compound. The photon either misses the crystal atoms or is deflected by the atom. Most photons miss the atoms, but those deflected do so in a regular pattern because of the repetitious nature of crystals. That pattern may be recorded through the use of a strip of photographic film or a two-dimensional array detector to provide a hard copy of the deflection pattern.8 Thus the crystalline lattice type, distance between atoms, and number of atoms per unit cell may be found by analysis of the diffraction pattern. The crystal orientation is a face centered cubic lattice that was completely separate from all known carbohydrate crystal orientation.6 Face centered cubic means that there are atoms centered at the faces of the cube as well as at the corners. Adamantane was derived to have a tetragonal space group with four molecules per unit cell, and the vector quantities a = 6.60A and c = 8.81A.7 The carbon bond lengths and angles were stereotypically sound as they were measured to be 1.54 _ 0.01A and...