As the nighttime sky falls upon us and we gaze at the beautiful stars, imagination takes one away from the limits of our solar system to the depths of a high-mass black hole. The universe that we live in contains unique and exciting matter that interests us to learn about all the variances that may only be viewed through a telescope. Within this marvel of wonders, our universe holds a mystery that cannot be defined by modern and classic theories of physics. This mystery happens to be that of the ever clandestine, black hole. Unlike the anatomy of main sequence stars, the black hole has different properties and processes that are generally involved with this interstellar phenomenon. All in all, black hole commonly forms and functions in certain traditions. In addition, black holes influence the intergalactic space as no other known matter does. To gain a better understanding of the black hole, one must indulge their brain on the subject of how a black hole may come about. All black holes are formed from the gravitational collapse of a star, usually having a great, massive, core. A star is created when huge, gigantic, gas clouds bind together due to attractive forces and form a hot core, combined from all the energy of the two gas clouds. Energy produced by the clouds is so immense that the gases from within begin to nuclear react. The star begins nuclear reaction with universally abundant gas hydrogen. Following hydrogen fusion, the helium element becomes present after the core reaches a certain temperature (Kelvin). Carbon begins to bond as helium fusion is complete from core to surface. Stars lifespan may exceed millions or even billions of years due to nuclear fusion. The stars enduring conflict among gravity versus pressure and rotation prevents collapse. The gravitational pull from the core of the star is equal to the gravitational pull of the gases forming a type of orbit; however, when this equality is challenged,...