In this experiment you will study some metals and some nonmetals to find their relative reactivity. A ranking according to reactivity is called an activity series. For example, an activity series containing the elements calcium, gold and iron would put the reactive calcium at the top, iron in the middle, and the unreactive gold at the bottom. If a piece of iron metal is placed in a solution of gold nitrate, the iron will dissolve forming positive ions while the solid gold metal appears. The more reactive metal will displace ions of the less reactive metal from solution. The less reactive element will appear as the solid element.Purpose;To determine an activity series for metals using a microscale technique, and to determine an activity series for halogens using a solvent extraction technique.Procedure;a. Determine an activity series for some metals.Place a 24-well plate so that there are 6 wells across and 4 wells down. Place 1 dropper full of copper (II) nitrate solution in rows 2 through 4 in the first column. Put one dropper full of magnesium nitrate in wells 1, 3, and 4 of the second column. Place 1 dropper full of lead (II) nitrate in wells 1, 2, and4 of the third column. Put one dropper full of zinc nitrate in wells 1, 2, and 3 of the fourth column, and put 1 dropper full of silver nitrate on each of the 4 wells in the fifth column.Put a small piece of copper metal in each of the wells containing a solution in the first row. Add magnesium metal to each of the solutions in the second row, lead to the third, and zinc to the fourth row. Allow to stand at least 5 minutes. Determine if a reaction has occurred in each well by observing if a metal precipitate has formed or if the surface of the metal has become coated. If a metal ion is reduced by a metal, than the reserve reaction should not occur. One metal is more reactive than another if the metal will replace the metal ion in its compounds. Record your data.Dispose of all material...