Today eighty percent of infants are being vaccinated for diphtheria; pertussis (whooping cough), polio, measles, tetanus and tuberculosis (Landrige 2000). This percentage is up from about five percent in the mid-1970s; however, the death toll from these infections is roughly three million annually. Millions still die from infectious diseases for which immunizations are non-existent, unreliable, or too costly. Vaccines all function with the same idea in mind, priming the immune system to swiftly destroy specific disease-causing agents, or pathogens, before the agents can multiply enough to cause symptoms (Landrige 2000). Classically, this priming has been achieved by presenting the immune system with whole viruses or bacteria that have been killed or made too weak to proliferate much (Landrige 2000).In the early 1990’s Charles J. Arntzen of Texas A&M found a way to solve many of the problems that bar vaccines from reaching all too many children in developing nations (Landrige 2000). Then Arntzen heard of a world health organization call for an inexpensive, oral vaccine that needed no refrigeration. He then visited Bangkok, where he saw a mother soothe a crying baby with a banana and he thought that perhaps food could be genetically engineered to produce vaccines in their edible parts, which could then be eaten when inoculations were needed (Landrige 2000). A genetically engineered food that would produce a vaccine is an amazing breakthrough in the world of immunization; vaccinations would become cheaper and more readily available.Long before the causes of disease were known and long before the processes of recovery were understood, and interesting thing was observed: if people recovered from a disease, rather than succumbing to it, they appeared to be immune from a second bout with the same illness (Okonek 2001). First the Chinese tried to prevent small pox (a deadly disease characterized by pus-filled blisters) by exposi...