arger than the fiber itself. Loose buffer construction offers a high degree of isolation from external mechanical forces such as vibration. Tight buffer construction on the other hand provides for a smaller bend radius, smaller overall diameter, and crush resistance. To further protect the fiber from stretching during installation, and to protect it from expansion and contraction due to temperature changes, strength members are added to the cable construction. These members are made from various materials from steel (used in some multi - strand cables) to Kevlar. In single and double fiber cables, the strength members are wrapped around the coating. In some multi-strand cables, the strength member is in the center of the bundle. The jacket is the last item in the construction, and provides the final protection from the environment in which the cable is installed. Of concern here is the intended placement of the cable. Different jackets provide different solutions for indoor, outdoor, aerial, and buried installations.Fiber Specifications The most common size of multi mode fiber used in networking is 62.5/125 fiber. This fiber has a core of 62.5 microns and a cladding of 125 microns. This is ideally suited for use with 850nm and 1300nm wavelength drivers and receivers. For single mode networking applications, 8.3/125 is the most common size. It's smaller core is the key to single mode operation. Numerical aperture and acceptance angles are two different ways of expressing the same thing. For the core / cladding boundary to work as a mirror, the light needs to strike at it a small / shallow angle (referred to as the angle of incidence). This angle is specified as the acceptance angle and is the maximum angle at which light can be accepted by the core. Acceptance angle can also be specified as Numerical Aperture, which is the sin of the acceptance angle (Numerical Aperture = sin (acceptance angle)).Transmitter Specifications...