Seven months after the discovery of the neutron, on September 12, 1932, Leo Szilard inaugurated the possibility of a controlled release of atomic power through a multiplying neutron chain reaction. Leo was legally recognized as the inventor of the atomic bomb on July 4, 1934. He described not only the basic concept of using neutron induced chain reactions to create explosions, but also the key concept of the critical mass. There are 2 types of atomic explosions, one in which two fragments of comparable mass, with the evolution of approximately 100 million to several hundred million volts of energy. This energy is expelled explosively and violently in the atomic bomb. The second type of atomic explosion derives its power from the fusing of nuclei of various hydrogen isotopes in the formation of helium nuclei. The massive power behind the reaction in an atomic bomb arises from the forces that hold the atom together. These forces are akin to, but not quite the same as, magnetism. Atoms are comprised of three sub-atomic particles. Protons and neutrons cluster together to form the nucleus (central mass) of the atom while the electrons orbit the nucleus much like planets around a sun. It is these particles that determine the stability of the atom. Most natural elements have very stable atoms which are impossible to split except by bombardment by particle accelerators. For all practical purposes, the one true element whose atoms can be split comparatively easily is the metal Uranium. Uranium's atoms are unusually large, henceforth, it is hard for them to hold together firmly. It is also a heavy metal, heavier than gold, and not only does it have the largest atoms of any natural element, the atoms that comprise Uranium have far more neutrons than protons. This does not enhance their capacity to split, but it does have an important bearing on their capacity to facilitate an explosion. There are two isotopes of Uranium. Natural Uranium consists...