er Jan Oort first proposed the theory of the Oort Cloud in 1950. His study of the orbits of comets with very long orbital periods made him believe that a large cloud of comets existed far outside the solar system, possibly within the range of 5-8 trillion kilometers (or more) from the sun. The total number of comets within this belt was estimated as a trillion. It is thought that objects within this cloud are occasionally ejected either by collision with one another, or by the gravitational forces of stars. Many of the ejected objects probably never cross the paths of the planets, and still more do not come close enough to be seen with even the largest telescopes. However, a few do manage to travel into the inner solar system and are subsequently seen from Earth. This cloud remains a theory only, as it has never been directly detected. The Kuiper Belt is a region that was first proposed by the Dutch-American astronomer Gerard Kuiper in 1951. Seeing that Oort's cloud of comets did not really explain the reason for the population of comets with short orbital periods (making complete orbits around the sun in less than 200 years), Kuiper thought that a belt of comets probably existed outside the orbit of Neptune within the range of 30 to 50 astronomical units (2.8 to 4.6 billion miles) from the sun. Collisions and perturbations by the planets of our solar system are believed to be the reasons for the ejection of bodies from this belt. Around 1988, astronomers David Jewitt (University of Hawaii) and Jane Luu (University of California at Berkeley) began searching for members of the Kuiper belt using modern electronic cameras attached to a large telescope on Mauna Kea, Hawaii. The equipment was capable of detecting extremely faint objects. After nearly 5 years of systematic searching they found a distinct image on 1992 August 30, which was subsequently designated 1992 QB1. The object was moving very slowly, and calculations eventually revealed...