Paper Details  
 
   

Has Bibliography
17 Pages
4165 Words

 
   
   
    Filter Topics  
 
     
   
 

quantam computing

scientists have a rigorous way of defining what makes an algorithm fast (and usable) or slow (and unusable). For an algorithm to be fast, the time it takes to execute the algorithm must increase no faster than a polynomial function of the size of the input. Informally think about the input size as the total number of bits needed to specify the input to the problem, for example, the number of bits needed to encode the number we want to factorise. If the best algorithm we know for a particular problem has the execution time (viewed as a function of the size of the input) bounded by a polynomial then we say that the problem belongs to class P. Problems outside class P are known as hard problems. Thus we say, for example, that multiplication is in P whereas factorisation is not in P and that is why it is a hard problem. Hard does not mean ``impossible to solve'' or ``non-computable'' --- factorisation is perfectly computable using a classical computer, however, the physical resources needed to factor a large number are such that for all practical purposes, it can be regarded as intractable (see inset 1). It worth pointing out that computer scientists have carefully constructed the definitions of efficient and inefficient algorithms trying to avoid any reference to a physical hardware. According to the above definition factorisation is a hard problem for any classical computer regardless its make and the clock-speed. Have a look at Fig.3 and compare a modern computer with its ancestor of the nineteenth century, the Babbage differential engine. The technological gap is obvious and yet the Babbage engine can perform the same computations as the modern digital computer. Moreover, factoring is equally difficult both for the Babbage engine and top-of-the-line connection machine; the execution time grows exponentially with the size of the number in both cases. Thus purely technological progress can only increase the computational speed by a fixed...

< Prev Page 8 of 17 Next >

    More on quantam computing...

    Loading...
 
Copyright © 1999 - 2025 CollegeTermPapers.com. All Rights Reserved. DMCA