not be restored to its original pre-acidic state even though the pH of water may have returned to more normal levels. When limestone dissolves in water it produces carbon dioxide. This could be a problem since a higher content of carbon dioxide would mean a lowered oxygen content especially when much algae growth is present. As a result, fish and other organisms may suffer. Limestone also does not dissolve as readily as sodium hydroxide thus taking a longer period of time to react with sulfuric acid to neutralize the lake. The equation for the neutralization using limestone is as follows: Ca CO3 + H2SO4 * CaSO4 + H2O. iv) The effect of the Acid or excessive Base on the plant and animal life: You will probably find that there aren't many aquatic living organisms in waters that are excessively basic or acidic. A high acidic or basic content in lakes kill fishes and other aquatic species. Prolonged exposure to acidic or excessively basic conditions can lead to reproductive failure and morphological aberration of fish. A lowered pH tends to neutralize toxic metals. The accumulation of such metals in fish contaminates food chains of which we are a part as these metals can make fish unfit for human consumption. Acidification of a lake causes a reduction of the production of phytoplankton (which is a primary producer) as well as in the productivity of the growth of many other aquatic plants. In acidic conditions, zooplankton species will probably becompletely eliminated. In addition, bacterial decomposition of dead matter is seriously retarded in acidified lake waters. Other effects of acidic conditions arean overfertilization of algae and other microscopic plant lifecausing algae blooms. Overgrowth of these consumes quickly most of the oxygen in water thus causing other life forms to die from oxygen starvation. When there are excessive base or acid in waters, not only do aquatic organisms get affected but animals who depend on aquatic plants...