e embodied in the separate "units" of ENIAC, which were plugged together to form a "route" for the flow of information. These connections had to be redone after each computation, together with presetting function tables and switches. This "wire your own" technique was inconvenient, for obvious reasons, and with only some latitude could ENIAC be considered programmable. However, it was efficient in handling the particular programs for which it had been designed. ENIAC is commonly accepted as the first successful high-speed electronic digital computer (EDC) and was used from 1946 to 1955. A controversy developed in 1971, however, over the patent ability of ENIAC's basic digital concepts. The claim was made that another physicist, John V. Atanasoff, had already used the same ideas in a simpler vacuum-tube device. It was in 1939 that John Atanasoff and Clifford Berry of Iowa State College completed their prototype of the first digital computer. It could store data and perform addition and subtractions using binary code. They had to abandon their efforts for a next generation machine due to the onset of World War II. In 1973 the courts found in favor of the company using the Atanasoff claim. Fascinated by the success of ENIAC, the mathematician John Von Neumann undertook, in 1945, an abstract study of computation that showed that a computer should have a very simple, fixed physical structure. Furthermore, he concluded, it should be able to execute any kind of computation by means of a proper-programmed control, without the need for any change in the unit itself. Von Neumann contributed a new awareness of how practical and fast computers should be organized and built. These ideas, usually referred to as the stored-program technique, became essential for future generations of high-speed digital computers and were universally adopted. The stored-program technique involves many features of computer ...