he escape of the light out the walls of the fiber. Light enters one end of the fiber from a light bulb, laser, or some other source, and travels essentially unimpeded all the way to the length of the fiber where it is intercepted by a photosensitive detector such as an electronic device or even the human eye. The distance of travel varies according to the use to anywhere from just a few inches to over one-hundred and fifty miles. Fiber optic cable can transmit large amounts of information over one-hundred and fifty miles almost instantaneously. While it takes five hours to transmit the contents of an encyclopedia over copper wires, the entire work can be transmitted in less than a minute over fiber optics (Yawn PG).Single Mode/Multi-ModeFibers referred to as single mode are most often used for the longer distance transmissions. Multi mode fibers are used in applications requiring less distance. They are less expensive than single-mode fibers and accept light from a larger variety of sources and from different angles. Single-mode fibers are smaller in diameter than are multi-mode and are particular both about the type of light they will accept and the angle at which it can be introduced. They typically accept light only when it is directly input to the axis of the fiber. This ability requires special light sources such as lasers and special and precise connections both at the light source and to the detector. When several single-mode fibers are connected each connection must also be very precise and exact. All of these requirements of course result in greater costs associated with the use of single mode fibers than would be incurred with the use of multi-mode fibers but that cost is a necessity of long distance transmission.Optical fibers are used in a countless number of applications. Communication is the most quickly growing field utilizing fiber optics. Optical fibers transmit messages through coded flashes of light whic...