using PCR primers that are specifis for an EST (or STS) to type YACs and other clones within clone contig maps that have been produced for the relevant chromosome and/or typing of a panel of whole genome radiation hybrids. Two such panels have been used in particular (sect 10.1.3): the Gene-bridge panel (average size 25 Mb), and for higher resolution, the Stanford G3 panel (average fragment size 2.4 Mb).Using the above approaches, the number of human genes that were placed on the physical map increased exponentially(fig 13.3). The latest human gene map, published in Octomber 1998?, was achieved by radiation hybrid mapping consortium led by the Sanger centre, UK, together with various other centres, notably Stanford human genome centre, the Genethon lab in Paris, the Whitehead institute and the welcome trust centre for human genetics at Oxford, UK. In all, map positions for over 30 000 human genes were reported (Deloukas et al., 1998), representing possibly 30-40% of the total human gene catalog. In many cases there is little or no coding sequences for the mapped genes and considerable effort is being devoted to sequencing large inserts of human cDNA clones in various laboratories throughout the world. Different research programs are investigating gene expression in specific tissues or in specific states. For example the Cancer Genome project (electronic reference 2), a program devised at the US National Cancer Institute, is devoted to studying expression of genes in various human tumor cells, including sequencing of large insert cDNA clones from cDNA libraries made from human tumor cells and large-scale expression profiling using microarrays (section 20.2.2).Could put this at the beginning.Accelerated sequencing efforts mean that the ultimate physical map, the complete neucleotide sequence of the human genome, shpuld be delivered by the year 2003. At th outset of the human genome project, DNA sequencing was expensive and not very effic...