of pure flammable oil to ignite. After the evaporation process the dissolution process begins. The density of the oil will determine just how long the oil will stay at the surface of the water, or how long it will take for the oil slick to break apart and dilute itself. If the oil is relatively light then the period of dilution shall be relatively shorter. Whereas if the oil is heavier in mass, the outcome is a Ahighly persistent water-in-oil emulsion of semi-solid lumps known as chocolate mousse or more approriatly called tarballs (Gourlay 105)@. The latter is potentially more dangerous in a sense that the breakdown period, as well as the outcome of these tarballs is unknown (Gourlay 105). One known outcome is for the tarballs to sink to the bottom of the ocean and lie undisturbed for an unknown period of time. Here scientists have discovered is where the turmoil begins to discretely affect the food chain (Simon 46). The dilution of oil can affect the marine life in many deadly ways. The release of toxic chlorinated hydrocarbons, as well as the clouds of chocolate mousse (tarballs) are just two examples of the breaking down and diluting of crude petroleum. Anne Simon, author of Neptunes Revenge, describes the effects of clouded water (due to oil pollution) upon the sea life in three words, Asuffocation by anoxia,@ or more easily understood as death due to lack of oxygen (Simon 48). Fish rely on oxygen to survive just as we humans do, but to obtain this oxygen the fish go through a completely different process of inhalation, as compared to humans. As a fish sucks water into its body, it also pushes water out of its thin-walled fillamented gills. This is where the exchange of carbon-dioxide for oxygen takes place. With each gulp of water a fish takes in seventy five percent of the oxygen in that water is distributed throughout the fish=s bloodstream (Simon 48). Therefore, if there is not enough oxygen in the water, or the gills of fish b...