her. Unfortunately, however, the pressure was still insufficient to drive industrial-size steam engines, which were designed to operate under pressures produced by hotter-burning coal or wood.After determining that the cost of building a larger absorber would be prohibitive, Shuman reluctantly conceded that the additional heat would have to be provided through some form of concentration. He thus devised a low-cost reflector stringing together two rows of ordinary mirrors to double the amount of radiation intercepted. And in 1911, after forming the Sun Power Co., he constructed the largest solar conversion system ever built. In fact, the new plant, located near his home in Talcony, Penn., intercepted more than 10,000 square feet of solar radiation. The new arrangement increased the amount of steam produced, but still did not provide the pressure he expected.Not easily defeated, Shuman figured that if he couldn't raise the pressure of the steam to run a conventional steam engine, he would have to redesign the engine to operate at lower pressures. So he teamed up with E.P. Haines, an engineer who suggested that more precise milling, closer tolerances in the moving components, and lighter-weight materials would do the trick. Haines was right. When the reworked engine was connected to the solar collectors, it developed 33 horsepower and drove a water pump that gushed 3,000 gallons per minute onto the Talcony soil.Shuman calculated that the Talcony plant cost $200 per horsepower compared with the $80 of a conventionally operated coal system--a respectable figure, he pointed out, considering that the additional investment would be recouped in a few years because the fuel was free. Moreover, the fact that this figure was not initially competitive with coal or oil-fired engines in the industrial Northeast did not concern him because, like the French entrepreneurs before him, he was planning to ship the machine to the vast sunburnt regions in Nor...