th Africa.To buy property and move the machine there, new investors were solicited from England and the Sun Power Co. Ltd. was created. But with the additional financial support came stipulations. Shuman was required to let British physicist C. V. Boys review the workings of the machine and suggest possible improvements. In fact, the physicist recommended a radical change. Instead of flat mirrors reflecting the sun onto a flat-plate configuration, Boys thought that a parabolic trough focusing on a glass-encased tube would perform much better. Shuman's technical consultant A.S.E. Ackermann agreed, but added that to be effective, the trough would need to track the sun continuously. Shuman felt that his conception of a simple system was rapidly disintegrating.Fortunately, when the machine was completed just outside of Cairo, Egypt, in 1912, Shuman's fears that the increased complexity would render the device impractical proved unfounded. The Cairo plant outperformed the Talcony model by a large margin--the machine produced 33 percent more steam and generated more than 55 horsepower--which more than offset the higher costs. Sun Power Co.'s solar pumping station offered an excellent value of $150 per horsepower, significantly reducing the payback period for solar-driven irrigation in the region. It looked as if solar mechanical power had finally developed the technical sophistication it needed to compete with coal and oil.Unfortunately, the beginning was also the end. Two months after the final Cairo trials, Archduke Ferdinand was assassinated in the Balkans, igniting the Great War. The fighting quickly spread to Europe's colonial holdings, and the upper regions of Africa were soon engulfed. Shuman's solar irrigation plant was destroyed, the engineers associated with the project returned to their respective countries to perform war-related tasks, and Frank Shuman died before the armistice was signed.Whether or not Shuman's device would have ...