re permitted the therapeutic radiation device to be configured unsafely in X-Ray mode, without its protective filter in place" (Neumann). Such blind faith in the system resulted in several patients being given too high a dose that killed the patients.3.0 ConclusionIt is obvious to see from these examples that failures are very rarely due to one cause alone. In major system failures it can be over a dozen mistakes being made that usually results in the failure of the system. Also the mistakes have a domino effect or leads to a viscous circle of mistakes, the systems becoming worse and worse during both the design and implementation stage. In almost all large system failures there is a case of when commercial pressures are put above safety. The Paddington rail crash (5th October 1999) could have been prevented if the train had been fitted with the Train Protection Warning System. This system would physically stop the train if it went through a red signal and was recommended in the report following the train crash at Southall. However it would have cost Railtrack something like 150-200 million. The system will however now be introduced to all trains by 2004. The facts were taken from BBC online.It is obvious that the main reason for the commercial pressures is cost. The Challenger disaster might have been prevented if sensors had not been removed from the booster rockets. But the cost of some extra sensors compared to the already astronomical cost of space exploration makes it seem a little nonsensical. The cost of a space shuttle is well over $1 billion, never mind the damage it did to NASA’s reputation. However it is not always cost saving that leads to system failures. In both the Denver ALHS and the London Ambulance System CAD it is more a case of money wasting. When the initial investment has been made a company finds it very hard to terminate the project. They would rather get the system working than admit defeat, whatever the ...